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In this paper, we recover sparse signals from their noisy linear
measurements by solving nonlinear differential inclusions, which we
call Bregman ISS and Linearized Bregman ISS. We show that under
proper conditions, there exists a bias-free and sign-consistent point
on their solution paths, which corresponds to a signal that is the unbi-
ased estimate of the true signal and whose entries have the same signs
as those of the true signs. Therefore, their solution paths are regular-
ization paths better than the LASSO regularization path, since the
points on the latter path are biased. We also show how to efficiently
compute their solution paths in both continuous and discretized set-
tings: the full solution paths can be exactly computed piece by piece,
and a discretization leads to Linearized Bregman iteration, which is
faster and easy to parallelize. Theoretical guarantees such as sign-
consistency and minimax optimal l2-error bounds are established in
both continuous and discrete settings for specific points on the paths.
Early-stopping rules for identifying these points are given. The key
treatment relies on the development of differential inequalities for
differential inclusions and their discretizations.

1. Introduction. We study two continuous time dynamics Bregman
ISS 1 and Linearized Bregman ISS, as well as the forward-Euler discretization
of the latter, for recovering a sparse unknown signal β∗ ∈ Rp from its noisy
linear measurements

(1.1) y = Xβ∗ + ε.

Here, y ∈ Rn is a measurement vector, X = [x1, . . . , xp] ∈ Rn×p is a mea-
surement matrix, and ε is unknown random noise. We allow n < p and
assume that β∗ has s ≤ min{n, p} nonzero components. For convenience, let
S = supp(β∗) and T be its complement, i.e. T = {i : β∗i = 0}.

The solution path {ρt, βt}t≥0 of Bregman ISS is given by the nonlinear

Keywords and phrases: Linearized Bregman, Differential Inclusion, Early Stopping
Regularization, Statistical Consistency

1ISS abbreviates Inverse Scale Space, a name adopted from the imaging literature
[BOXG05]. There, large-scale image features are recovered before small-scale ones.
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differential inclusions:

ρ̇t =
1

n
XT (y −Xβt),(1.2a)

ρt ∈ ∂‖βt‖1,(1.2b)

where t ≥ 0 is time, ρt ∈ Rp is assumed to be right continuously differentiable
in t, ρ̇t is the right derivative of ρt, and βt is assumed to be right continuous.
The inclusion condition (1.2b) restricts ρt to a subgradient of `1-norm at βt,
t ≥ 0. The initial conditions are, typically, ρ0 = 0 and β0 = 0. We will see
that a solution to (1.2) exists and both ρt and Xβt, t ≥ 0, are unique. In
addition, ρt is piece-wise linear, and there exists a solution path βt that is
piece-wise constant. The entire path can be computed at finitely many break
points.

Linearized Bregman ISS has its solution path {ρt, βt}t≥0 governed by the
nonlinear differential inclusions:

ρ̇t +
1

κ
β̇t =

1

n
XT (y −Xβt),(1.3a)

ρt ∈ ∂‖βt‖1,(1.3b)

where κ > 0 is a constant. Compared to (1.2a), equation (1.3a) has the
additional term 1

κ β̇. As κ → ∞, (1.3) is reduced to (1.2), and the solution
path of (1.3) may converge to that of (1.2) exponentially fast as κ increases.
We will see that (1.3) has a unique solution path ρt and βt, t ≥ 0, which are
both continuous.

The discretizations of (1.2) and (1.3) are known as Bregman Iteration
(equation (3.7) of [YODG08]) and Linearized Bregman Iteration (equations
(5.19-20) of [YODG08]). They were introduced in the literature of varia-
tional imaging and compressive sensing before (1.2) and (1.3). Through a
change of variable, Bregman Iteration becomes the iteration of the Aug-
mented Lagrangian Method [Hes69, Pow67]. On the other hand, Linearized
Bregman Iteration is a simple two-line iteration:

ρk+1 +
1

κ
βk+1 = ρk +

1

κ
βk +

αk
n
XT (y −Xβk),(1.4a)

ρk ∈ ∂‖βk‖1,(1.4b)

which is evidently a forward Euler discretization to (1.3), where αk > 0 is a
step size. Define zk = ρk + 1

κβk. Then (1.4) can be simplified to:

zk+1 = zk +
αk
n
XT (y −Xβk)(1.5a)

βk+1 = κ · shrink(zk+1, 1),(1.5b)
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where the mapping shrink is defined component-wise as

shrink(z, λ) := sign(z) max{|z| − λ, 0}, z, λ ∈ R, λ ≥ 0.

Note that shrink(z, λ) is the unique solution to the convex program:

min
x∈R
|x|+ 1

2λ
(x− z)2.

1.1. Motivations and contributions. Our exposition is motivated by the
fact that solution path {βt}t≥0 of the differential inclusion (1.2) and the
sequence {βk}k≥0 of (1.4) are better than the points on the LASSO regu-
larization path. In particular, while LASSO regularization path is always
biased, βt can be unbiased when the correct set of variables is reached.

To see this, consider the LASSO problem [Tib96],

(1.6) min
β
λ‖β‖1 +

1

2n
‖y −Xβ‖22,

where for the convenience of comparison we replace the regularization pa-
rameter λ by t = 1/λ in the following equivalent form

(1.7) min
β
‖β‖1 +

t

2n
‖y −Xβ‖22.

Aside from the obvious relation t = 1/λ, solution β is piece-wise linear in
λ [EHJT04] though not so in t. Despite this, t will be convenient to our
analysis by reflecting a nature of time evolution of the solution.

Since (1.7) is a convex program, β̂t is a solution to (1.7) if and only if it
obeys the first-order optimality conditions

ρ̂t
t

=
1

n
XT (y −Xβ̂t),(1.8a)

ρ̂t ∈ ∂‖β̂t‖1,(1.8b)

which are obtained by taking the subdifferential of the objective in (1.7).
It is well-known that LASSO solution β̂t is biased [FL01]. For example,

considering the simple case that n = p = 1, X is the identity and y ≥ 0,
then (1.8) yields

(1.9) β̂t =

{
0, if t < 1/y;
y − 1/t, otherwise,

while (1.2) has the solution

(1.10) βt =

{
0, if t < 1/y;
y, otherwise,
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which is unbiased for t ≥ 1/y as E[βt] = E[y] = β∗.
Moreover, the Linearized Bregman ISS (1.3) has the solution,

(1.11) βt =

{
0, if t < 1/y;

y(1− e−κ(t−1/y)), otherwise,

which converges to the unbiased Bregman ISS estimator exponentially fast.
Let us discuss this phenomenon in the general setting. First, let the or-

acle estimator be the subset least-squares solution β̃∗ given the true set of
variables S by an oracle, whose nonzero entries are given by

(1.12) β̃∗S =

(
1

n
XT
SXS

)−1 1

n
XT
S y = β∗S +

(
1

n
XT
SXS

)−1 1

n
XT
S ε.

Clearly β̃∗S ∼ N (β∗S ,Σn) where Σn = σ2

n

(
1
nX

T
SXS

)−1
. Since in expectation

with respect to noise, E[β̃∗] = β∗, β̃∗ is an unbiased estimate of β∗.
In reality we are not given the support set S, so the following two prop-

erties are used to evaluate the performance of an estimator β̂.

1. Model selection consistency: supp(β̂) = S;
2. Asymptotic normality:

√
n(β̂ − β∗)→ N (0,Σ∗), where

Σ∗ = lim
n→∞

nΣn = σ2

(
lim
n→∞

1

n
XT
SXS

)−1

.

Since these properties hold for the oracle estimator, they are often referred
to as the oracle properties.

A solution mapping β̂t : [0,∞) → Rp gives a regularization path. Model
selection consistency, also known as path consistency, refers to the exis-
tence of a point β̂τ on this path that selects the correct variables, namely,
supp(β̂τ ) = S. Path consistency has been obtained for LASSO by establish-
ing the stronger property of sign consistency, that is, sign(β̂τ ) = sign(β∗),
under certain conditions such as those in [ZY06, Zou06, YL07, Wai09]. Pro-
vided that path consistency is reached at τ , the LASSO estimate β̂τ is
nonetheless biased since

(1.13) β̂τ,S =

(
1

n
XT
SXS

)−1 1

n
XT
S y −

(
1

n
XT
SXS

)−1 ρ̂τ
τ
,

where ρτ = sign(β̂τ ) ∈ ∂‖β̂τ‖1. The first-term on the right-hand side equals
the oracle estimator β̃∗S , which is unbiased, whereas the second-term never
vanishes and is the bias. Hence, the oracle properties are never completely
met by LASSO.
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The bias can be removed by a simple differentiation of LASSO solution.
To see this, by multiplying t on both sides of (1.8a) and differentiating it
with respect to t, any point on the LASSO path satisfies

(1.14) ˙̂ρt =
1

n
XT (y −X(β̂t + t

˙̂
βt)).

With path consistency assumed at time t = τ , we have βτ,i = 0, ∀ i 6∈ S,
and from (1.14) we have

(1.15) ˙̂ρτ,S =
1

n
XT
S (y −XS(β̂τ,S + τ

˙̂
βτ,S)).

Generically, sign consistency occurs in a neighborhood and thus ρ̇τ,S = 0.
Therefore,

β̂τ,S + τ
˙̂
βτ,S =

(
1

n
XT
SXS

)−1 1

n
XT
S y = β̃∗S ,

which is the oracle estimator without bias! This motivates us to replace

(β̂t + t
˙̂
βt) in (1.14) by just βt, which gives the differential inclusions (1.2a)

of Bregman ISS. Later we will show that the resulting βt in (1.2) is indeed
unbiased.

Therefore, in addition to giving the basic solution properties such as exis-
tence, uniqueness, and (dis)continuity, we also attempt to explain the good
behaviors of the new solution paths and sequence by establishing their path
consistency property. Basically we argue that

1. Under nearly the same conditions for LASSO [ZY06, Zou06, YL07,
Wai09] that the covariates xi are sufficiently uncorrelated and the
signal β∗S is strong enough, Bregman ISS (1.2) with a proper early
stopping rule will return the oracle estimator ;

2. Sign consistency and l2-error bounds of minimax rates can be general-
ized to the Linearized Bregman iteration (1.4) and its limit dynamics
(1.3), under similar conditions.

Some computational aspects are reviewed in the next subsection.

1.2. Related work.

1.2.1. Regularization and other algorithms. For general penalized least
square problems, [FL01] has shown that no convex penalty functions can
fully achieve the oracle properties and thus one has to resort to non-convex
regularization, whose global minimizer is, however, algorithmically difficult
to locate. Alternatively, one can apply LASSO for variable selection and then
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remove the bias in LASSO by solving a subset least squares in the second
stage. On the other hand, [OBG+05] noticed that Bregman iteration may
reduce bias, also known as contrast loss, in the context of Total Variation
image denoising. In this paper, we shall see that dynamics (1.2) can au-
tomatically remove bias without any non-convexity or second-stage subset
least squares. It is a different kind of regularization via early stopping.

Early stopping regularization has been studied widely in linear inverse
problems, e.g. [EHN96], and recently in Boosting, e.g. [Fri01, BY02, YRC07].
In fact, Linearized Bregman iterations can be viewed as an extension of
Landweber iteration (also called L2-Boost in statistics),

βk+1 = βk +
αk
n
XT (y −Xβk),

which follows the primal path βt as a gradient descent method solving least
square problem. To have solution sparsity, Linearized Bregman iterations
(1.4) adds the dual path ρt in favor of sparse solutions.

Linearized Bregman iteration (1.5) is shown in [Yin10] equivalent to the
gradient ascent iteration applied to the Lagrange dual of the problem

(1.16) min
β
‖β‖1 +

1

2κ
‖β‖22 subject to Xβ = y.

In particular, βk converges to the unique solution of (1.16) at a linear rate
(as long as X 6= 0 and Xβ = y has a solution); see [LY13]. In addition,
for sufficiently large κ, the solution to (1.16) is a solution to the basis pur-
suit model [CDS98], which is (1.16) without 1

2κ‖β‖
2
2. In noisy settings, early

stopping regularization is necessary for signal recovery. The results in this
paper basically say that under nearly the same condition as LASSO, Breg-
man ISS with early stopping regularization may recover the signal without
bias. We note that such dynamics can be easily extended to general settings
with differentiable convex loss and non-differentiable convex penalty, e.g.
Linearized Bregman iteration in matrix completion [CCS10].

One should not confuse Linearized Bregman iteration (1.5) with itera-
tive soft-thresholding algorithm (ISTA), which has been widely used under
different names in the literature (for example, see [DJ95, Don95, CDLL98,
DD02, DDD04]),

βk+1 = shrink(βk +
αk
n
XT (y −Xβk), λk).

By moving the shrinkage operator to a different place in (1.5), Linearized
Bregman iteration generates a sparse solution path with early stopping reg-
ularization, while ISTA exploits λk as the regularization parameter and its
iterates converge to a LASSO solution.
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1.2.2. Parallel and distributed computing. It is very easy to implement
iteration (1.5) in parallel and distributed manners and apply it to very large-
scale datasets. Suppose

X = [X1, X2, . . . , XL] ∈ Rn×p,

where X`’s are submatrices stored in a distributed manner (on a set of
networked workstations). The sizes of X`’s are flexible and can be chosen
for good load balancing. Let each workstation ` hold data y and X`, and
variables zk,` and wk,` := X`βk,`, which are parts of zk and summands of
wk := Xβk, respectively. The iteration (1.5) is carried out as

for ` = 1, . . . , L in parallel:

{
zk+1,` = zk,` + αk

n X
T
` (y − wk),

wk+1,` = 1
κX`shrink(zk+1,`, 1),

all-reduce summation: wk+1 =
L∑
`=1

wk+1,`,

where the all-reduce step collects inputs from and then returns the sum to
all the L workstations. It is the sum of L n-dimensional vectors, so no matter
how the all-reduce step is implemented, the communication cost is indepen-
dent of p. It is important to note that the algorithm is not changed at all. In
particular, distributing the data into more computing units, i.e., increasing
L, does not increase the number of iterations. Therefore, the parallel imple-
mentation is nearly embarrassingly parallel and truly scalable. In addition,
it is also possible to develop implementations for data divided into blocks of
rows of X or even smaller subblocks that split both rows and columns. Re-
cently, (1.5) has also been extended in [YLYR13] to a decentralized setting
where not only data and computation are distributed but communication
is restricted to computing units with direct communication links so there is
no data fusion center or long distance communication. The scheme fits sen-
sor network or multi-party regression over the internet, where long-distance
communication incurs long delays and high costs.

1.3. Notation and assumptions. We introduce the following notation and
assumptions to β∗, X, and ε.

• Let the true support be denoted by S = supp(β∗) = {i : β∗i 6= 0}, and
T = Sc be its complement. Clearly, S ∪ T = {1, . . . , p}.
• XS denotes the submatrix of X formed by the columns of X in S,

which are assumed to be linearly independent. Similarly define XT so
that [XS XT ] = X.
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• Assume ε ∼ N (0, σ2In). It can generalize to sub-Gaussian without
violating most of our results.

Define 〈u, v〉 = uT v and 〈u, v〉n = 1
nu

T v for u, v ∈ Rn. Hence ‖u‖n = 1√
n
‖u‖.

Let X∗ = 1
nX

T be the adjoint operator of X with respect to inner product
〈·, ·〉n. Let the largest and the smallest nonzero magnitudes of β∗ be β∗max :=
max(|β∗i | : i ∈ S) and β∗min := min(|β∗i | : i ∈ S), respectively. Similarly define
β̃∗max and β̃∗min for the oracle estimator β̃∗ in (1.12). The dependence of ρt
and βt (or equivalently ρ(t) and β(t)) on t is omitted where it is clear from
the context. For the reason to be discussed in Section 2, we shall assume
that ρt is right continuously differentiable and βt is right continuous.

Throughout the paper, given two numbers a and b, let a∨ b := max(a, b).

1.4. Outline. In the rest of this paper, we establish basic solution prop-
erties of Bregman and Linearized Bregman ISS in Section 2. Section 3 and
Section 4 describe statistical consistency properties of Bregman ISS and their
generalizations to Linearized Bregman ISS/discretization, respectively. Sec-
tion 5 is dedicated to the ideas of proofs. Section 6 provides some preliminary
numerical results. Discussions and conclusions are summarized in Section 7.

2. Bregman and Linearized Bregman solution paths. The solu-
tion to Bregman ISS (1.2) is a piece-wise regularization path given iteratively
as follows, starting with k = 0, t0 = 0, and ρ0 = β0 = 0:

1. set tk+1 := sup{t > tk : ρtk + t−tk
n XT (y −Xβtk) ∈ ∂‖βtk‖1}; if tk+1 =

∞, then exit ;
2. set ρtk+1

:= ρtk +
tk+1−tk

n XT (y −Xβtk);
3. set Sk+1 := {i : |(ρtk+1

)i| = 1} and Tk+1 = {1, . . . , p} \ Sk+1;
4. set βtk+1

as any solution to

(2.1)
minβ ‖y −Xβ‖22

subject to (ρtk+1
)iβi ≥ 0 ∀ i ∈ Sk+1,
βj = 0 ∀ j ∈ Tk+1.

5. set k = k + 1 and go to Step 1.

Paper [BMBO13] gives an algorithm but does not establish the uniqueness
of solution path. One can show that the solution to (1.2) is piece-wise:

(2.2)

{
ρt = ρtk + t−tk

tk+1−tk ρtk+1
,

βt = βtk ,
t ∈ [tk, tk+1).

In other words, ρt is piece-wise linear and βt is piece-wise constant. The
following theorem presents some general conditions to ensure the existence
and uniqueness of solution path.
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Theorem 2.1 (Solution existence and uniqueness for Bregman ISS). Let
ρt be right continuously differentiable and βt be right continuous. Then, a so-
lution to (1.2) is given by (βt, ρt) generated by the above algorithm. Solution
ρt and Xβt are unique. In addition, if the columns xi of X for i ∈ supp(βt)
are linearly independent for t ≥ 0, then βt is also unique.

Proof. The existence part follows from [BMBO13].
We show that the uniqueness part. Define f(β) := 1

2n‖y − Xβ‖
2. Then,

the differential inclusion (1.2) is equivalent to

ρ̇t = −∇f(βt),(2.3a)

ρt ∈ ∂‖βt‖1,(2.3b)

Let S+
t := {i : (ρt)i = 1}, S−t := {i : (ρt)i = −1}, and St = S+

t ∪ S
−
t . By

(1.2b), in the case of St = ∅, we have βt = 0, so −∇f(βt) = −∇f(0) is
unique. In the case of St 6= ∅, we show below that Xβt and −∇f(βt) are
both unique. The uniqueness of ρt follows from these results and (2.3a).

In fact, (1.2a) and (1.2b) impose the following constraints on βt:

(2.4)


(βt)i ≥ 0 and (∇f(βt))i ≥ 0, ∀i ∈ S+

t ,

(βt)i ≤ 0 and (∇f(βt))i ≤ 0, ∀i ∈ S−t ,
(βt)i = 0, ∀i 6∈ St.

To see how ∇f(βt) is involved, notice that (∇f(βt))i ≥ 0 must hold for
∀i ∈ S+

t since (ρt)i ∈ [−1, 1] is already at its maximal value 1 and∇f(βt) < 0
is forbidden as it would further increase (ρt)i to an impossible value. The
same argument holds for (∇f(βt))i ≤ 0 for ∀i ∈ S−t .

Furthermore, we will have (βt)i ·(∇f(βt))i = 0 for all i. To see this, assume
(βt)i 6= 0. Then by the right continuity assumption, there exists an interval
[t, t + ε) in which βi remains nonzero with the same sign. By (2.3b), (ρt)i
will remain either +1 or −1 in the same interval, so (∇f(βt))i = 0. On the
other hand, assume (∇f(βt))i 6= 0. Then by (2.3a), ρi will change and thus
it cannot stay either +1 or −1. By the right continuity of β, it must hold
that (βt)i = 0. Therefore, we have the addition constraints

(2.5) (βt)i · (∇f(βt))i = 0.
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Conditions (2.4) and (2.5) are precisely the KKT optimality conditions for

min
β

f(β)

subject to


βi ≥ 0, ∀i ∈ S+

t ,

βi ≤ 0, ∀i ∈ S−t ,
βi = 0, ∀i 6∈ St,

(2.6)

which is identify to (2.1) except (2.1) specifies the time tk+1. Let βt be the
solution to problem (2.6).

In general, if f is strictly convex, then the solution βt is unique. In our
case, f is not necessarily strictly convex, but f = g(Xβ) for a strictly convex
function g. Therefore, Xβt is unique, and thus so is ∇f(βt) = XT∇g(Xβt).
Lastly, βt is unique if the columns of X corresponding to nonzero entries of
βt are linearly independent since Xβt is unique.

The existence and uniqueness of Linearized Bregman ISS is much simpler
as shown in the following theorem.

Theorem 2.2 (Solution existence and uniqueness for Linearized Bregman
ISS). Let ρt be right continuously differentiable and βt be right continuous.
Then (1.3) has a unique solution.

Proof. Let zt = f(ρt, βt) = ρt+
1
κβt, then f is an injective function from

the admissible set (ρ, β) to C1 in variable t and βt = κshrink(zt, 1). Now
differential inclusion (1.3) becomes the ODE

żt =
1

n
XT (y − κX · shrink(zt, 1)) =: g(zt)

Obviously, g(x) is Lipschitz continuous. Therefore, the Picard-Lindelöf The-
orem implies that there exists a unique solution to this ODE, which leads
to the solution of (1.3).

We note that the solution of (1.3), though not piece-wise linear or con-
stant, can still be computed in a piece-wise closed form where on each piece,
the signs of βt remain unchanged. This is left to the reader.

Provided that sign consistency is met by a point on the path at t = τ , (2.1)
returns an oracle solution as it is a least-squares problem subject to only
sign constraints. Hence, natural questions are: what conditions will guarantee
sign consistency? And, how to determine τ? In the sequel, we are going
to provide an answer to this question. Throughout the remaining of this
paper, we assume that ρt is right continuously differentiable and βt is right
continuous, so the existence and uniqueness of solution paths are guaranteed.
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3. Consistency of Bregman ISS Dynamics. In this section neces-
sary and sufficient conditions are established for noisy sparse signal recovery
with Bregman ISS (1.2).

3.1. Assumptions.

(A1) Restricted Strong Convexity: there is a γ ∈ (0, 1],

X∗SXS ≥ γI.

(A2) Irrepresentable Condition: there is a η ∈ (0, 1),

∥∥∥X∗TX†S∥∥∥∞ =

∥∥∥∥∥ 1

n
XT
TXS

(
1

n
XT
SXS

)−1
∥∥∥∥∥
∞

≤ 1− η

where X†S := XS

(
1
nX

T
SXS

)−1
.

Condition A1 says that the Hessian matrix of the empirical risk 1
2n‖y −

Xβ‖22 restricted on the index set S × S is strictly positive definitive, so the
empirical risk is strongly convex when restricted on the support set S. Such
a condition is necessary in the sense that once it fails, XS will be linearly
dependent and no unique representation is possible under the basis XS .

Condition A2 says that the absolute row sums of matrix X∗TX
†
S are all

less than one. It has been proposed independently under a variety of names,
e.g. Exact Recovery Condition [Tro04], Irrepresentable Condition [ZY06],
among [YL07, Zou06]. Here we adopt the name in [ZY06] as it refers to the
fact that the regression coefficients of XS for response Xj (j ∈ T ) all have
`1-norm less than one, i.e.

β′j = arg min
β∈Rs

1

2n
‖Xj −XSβ‖2 =⇒ ‖β′j‖1 < 1,

so in this sense one cannot represent the irrelevant covariates XT by the
relevant ones XS effectively.

Neither A1 nor A2 can be checked when the support set S of signal is
not known. Alternatively we can use a more strict but checkable condition
proposed in [DH01].

(A3) Mutual Incoherence Condition:

µ := max
i,j

∣∣∣∣ 1n 〈Xi, Xj〉
∣∣∣∣ < 1

(2s− 1)
, s = |S|.
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It can be shown [Tro04, CW11] that once A3 holds, then A1 and A2
simultaneously hold with

γ = 1− µ(s− 1)

since (1− µ(s− 1))IS ≤ X∗SXS ≤ (1 + µ(s− 1))IS , and

η =
1− µ(2s− 1)

1− µ(s− 1)
.

We note that condition A3 is shown to be sharp in the noisy case in [CWX10].
With these one can translate all the theoretical results with condition A1
and A2 into condition A3.

3.2. Mean Bregman ISS Path versus LASSO Path. As we have seen in
Section 1.1 near equation (1.14), Bregman ISS (1.2) can be derived by differ-
entiating LASSO’s KKT conditions. Such a relation can be seen precisely by
considering the consistency conditions of LASSO on the following temporal
mean path of Bregman ISS:

(3.1) β̄(t) :=
1

t

∫ t

0
β(s)ds.

According to Theorem 2.1 and Condition A1, Bregman ISS path βt is unique
and thus β̄(t) is well defined as long as supp(β(s)) ⊆ S, s ∈ [0, t), where S
is the true support.

A connection between Bregman ISS and LASSO lies in the same condition
under which their paths from start to time t are supported within the true
support S. In addition, the Bregman ISS mean path β̄(t) is identical to
the LASSO path if the Bregman ISS path is incremental with only adding
variables, but without dropping. In general, the two paths are distinct.

Theorem 3.1. Let (βt, ρt) be either the Bregman ISS path (1.2) or the
LASSO path (1.8) with ρ(t) ∈ ∂‖βt‖1. Assume that for all t ≤ τ ,

(3.2) ‖X∗TX
†
SρS(t) + tX∗TPT ε‖∞ < 1,

where PS⊥ = I − PS = I − X†SX∗S is the projection matrix onto im(XS)⊥.
Then for all t ≤ τ ,

A. the Bregman ISS path, its mean path, and the LASSO path all have
supports in S;

B. the mean Bregman ISS path β̄(1/λ) is piecewise linear with λ = 1/t;



SPARSE RECOVERY VIA DIFFERENTIAL INCLUSIONS 13

C. if the Bregman ISS path is incremental in the sense that St = supp(βt)
satisfies St ⊆ St′ ⊆ S for all t ≤ t′ ≤ τ , then the mean Bregman ISS
path is identical to the LASSO path; but they are distinct in general.

Remark 3.1. In particular in noiseless setting, ε = 0, (3.2) becomes

‖X∗TX
†
SρS(t)‖∞ < 1

or dropping ρS(t) by

‖X∗TX
†
S‖∞ = ‖X∗TXS(X∗SXS)−1‖∞ < 1

which is sufficient and necessary to guarantee that both Bregman ISS, LASSO,
and OMP [Tro04] recovers the sparse signal in noiseless setting; once it is
violated there is some S-sparse signal for which these methods fail.

Proof of Theorem 3.1. Assume there exists a τ ≥ 0, such that for all
t ≤ τ , solution path β(t) satisfies supp(β(t)) ⊆ S. Then Bregman ISS (1.2)
splits into

ρ̇S = −X∗SXS(βS − β∗S) +X∗Sε,(3.3a)

ρ̇T = −X∗TXS(βS − β∗S) +X∗T ε.(3.3b)

From (3.3a) one gets the Bregman ISS solution

(3.4) βS(t) = β∗S − (X∗SXS)−1ρ̇S + (X∗SXS)−1X∗Sε,

which leads to the following equation by plugging into (3.3b)

(3.5) ρ̇T = X∗TX
†
S ρ̇S +X∗TPT ε.

Integration on both sides of this equation and setting

(3.6) ‖ρT (t)‖∞ = ‖X∗TX
†
SρS(t) + tX∗TPT ε‖∞ < 1

which ensures that βT (t) = 0. So is the mean path.
On the other hand, LASSO starts from the KKT condition (1.8) which

splits into

ρ̂S/t = −X∗SXS(β̂S − β∗S) +X∗Sε(3.7a)

ρ̂T /t = −X∗TXS(β̂S − β∗S) +X∗T ε(3.7b)

Following the same trick above one can see the same condition (3.6) is met
for LASSO to ensure β̂T (t) = 0. This finishes the proof of part A.
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As to part B, for t ≤ τ , the mean path is obtained by integration on (3.3a)

(3.8) β̄S(t) =
1

t

∫ t

0
βS(s)ds = β∗S −

1

t
(X∗SXS)−1ρS(t) + (X∗SXS)−1X∗Sε.

Equation (2.2) implies that 1
t ρt = 1

t ρtk + 1−tk/t
tk+1−tk ρtk+1

, which is piecewise

linear with respect to λ = 1/t.
To see part C, let St = supp(βt) for Bregman ISS. If for all s ≤ t ≤ τ ,

Ss ⊆ St ⊆ S, then similar reasoning as above implies that the Bregman ISS
path satisfies

(3.9) β̄St(t) = β∗St −
1

t
(X∗StXSt)

−1ρSt(t) + (X∗StXSt)
−1X∗Stε.

For such incremental processes, ρSt(t) = sign(βSt(t)) = sign(β̄St(t)) which
meets the LASSO path equation

(3.10) β̂Ŝt(t) = β∗
Ŝt
− 1

t
(X∗

Ŝt
XŜt

)−1ρ̂Ŝt(t) + (X∗
Ŝt
XŜt

)−1X∗
Ŝt
ε,

where Ŝt = supp(β̂t) for LASSO. But such a relation is lost when variable
dropping happens.

Despite of the difference to the LASSO path, the mean Bregman ISS path
may reach statistical model-selection consistency under the same conditions
as LASSO.

Theorem 3.2 (Sign Consistency of Mean Path). Let

τ :=
η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.

Assume that both (A.1) and (A.2) hold. Then the following holds.

A. (No-false-positive) the mean path has no-false-positive before time
τ , i.e., ∀t ≤ τ supp(β̄t) ⊆ S, with probability at least 1− 2

p
√
π log p

;

B. (No-false-negative for Mean Path) moreover if the signal is strong
enough such that β∗min > c1/τ̄ ,

c1 =

(
η

√
γmaxj∈T ‖Xj‖n

+ ‖(X∗SXS)−1‖∞
)
,

then with probability at least 1 − 2
p
√
π log p

, the mean path β̄τ̄ has no

false-negative, i.e. sign(β̄τ̄ ) = sign(β∗).
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Remark 3.2. Under the same conditions as LASSO with λ∗ = 1/τ̄
[Wai09], the mean path β̄ of Bregman ISS reaches sign-consistency. These
conditions are sufficient and necessary in the sense that once violated, there
exists an instance such that the probability of failure will be larger than 1/2
due to noise. In this sense, the mean path estimator β̄(τ̄) is “statistically
equivalent” to the LASSO estimator.

The mean Bregman ISS path geometrically sheds light on why LASSO
incurs bias while Bregman ISS can avoid it. The LASSO path, likes the mean
Bregman ISS path, involves some kind of averaging that ensures the path
continuity but causes bias. The Bregman ISS path is piecewise constant,
allows it to be bias-free.

Now we need to answer the following question: what are conditions to
ensure the sign consistency of the Bregman ISS path?

3.3. Consistency of Bregman ISS. The following theorem tells us that
under the irrepresentable (incoherence) condition, the Bregman ISS dynam-
ics always evolves in the support of true signals in the early stage; further-
more if the signal is strong enough then the dynamics will pick up all the true
variables before selecting any incorrect ones. When such a sign consistency
is reached, Bregman ISS returns the oracle estimator which is unbiased.

Theorem 3.3 (Sign Consistency of Bregman ISS). Let

τ :=
η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.

Assume that both (A.1) and (A.2) hold. Then Bregman ISS (1.2) has paths
satisfying:

A. (No-false-positive) the path has no-false-positive before time τ , i.e.
∀t ≤ τ supp(βt) ⊆ S, with probability at least 1− 2

p
√
π log p

;

B. (Sign-consistency) moreover if the signal is strong enough such that

(3.11) β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n

Then with probability at least 1− 2
p
√
π log p

, sign(βτ̄ ) = sign(β∗).

Remark 3.3. Once the sign consistency holds, β(t) meets the oracle
estimator β̃∗ which is unbiased and has a l2-error rate ‖β(t) − β∗‖2 ≤
O(σ

√
s log s/n), even better than the l2-error rate O(σ

√
s log p/n) for the

LASSO estimator which is minimax optimal up to a logarithmic factor
[RWY11].
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To have sign consistency, Theorem 3.3 makes a strong signal condition
with a lower bound on β∗min. However even without such a strong signal
assumption, the minimax optimal l2-error rates can be achieved disregarding
sign consistency.

Theorem 3.4 (Minimax Optimal l2-Error Bound). Assume that both
(A1) and (A2) hold. There is a τ ∈ [0, τ ] such that with probability at least
1− 2

p
√
π log p

,

‖βτ − β∗‖2 ≤
2σ

ηγ

(
4 max
j∈T
‖Xj‖n + η

√
γ

)√
s log p

n
.

The existence of such τ does not ensure us to find it easily. However one
can use τ̄ at a cost of enlarging the constants by a square root of condition
number of ΣS = X∗SXS .

Corollary 3.1. Under the same condition of Theorem 3.4 and assum-
ing an upper eigenvalue bound X∗SXS ≤ γmaxIS, then the following holds for
all t ∈ [τ, τ̄ ] with probability at least 1− 2

p
√
π log p

‖βt − β∗‖2 ≤
2σ
√
K(X∗SXS)

ηγ

(
4 max
j∈T
‖Xj‖n + η

√
γ

)√
s log p

n

where K(X∗SXS) = γmax/γ is the condition number of X∗SXS.

All the results in this subsection follow from the more general results on
Linearized Bregman ISS (1.3) in the next section by taking κ→ 0. Therefore
we omit the proofs.

4. Generalizations to Linearized Bregman ISS and Its Discretiza-
tion. In this section, we state a general consistency result for Linearized
Bregman ISS (1.3) and Linearized Bregman Iterations (1.4) whose proof will
be given in the next section.

4.1. Consistency of Linearized Bregman ISS. The following theorem es-
tablishes general conditions for statistical consistency of Linearized Bregman
ISS (LBISS) (1.3).

Theorem 4.1 (Consistency of LBISS). Let

τ :=
(1−B/(κη))η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.
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Assume κ is big enough to satisfy

β∗max + 2σ

√
log p

γn
+
‖Xβ∗‖2 + 2σ

√
s log n

n
√
γ

, B ≤ κη.

Then (1.3) has paths satisfying

A. (No-false-positive) the path has no-false-positive before time τ ,i.e.,
∀t ≤ τ supp(βt) ⊆ S, with probability at least 1− 2

p
√
π log p

− 1
n
√
π logn

;

B. (No-false-negative for Mean Path) moreover if the signal is strong
enough such that β∗min > c1/τ̄ ,

c1 =

(
(1−B/(κη))η
√
γmaxj∈T ‖Xj‖n

+ (1 +B/κη)‖(X∗SXS)−1‖∞
)
,

then with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, the mean path β̄(t)

satisfies sign(β̄τ̄ ) = sign(β∗);
C. (Sign-consistency for LBISS) Moreover if the smallest magnitude

β∗min is strong enough and κ big enough such that

β∗min ≥
4σ

γ1/2

√
log p

n
,

8 + 4 log s

β∗min

+
1

κ
log(

3‖β∗‖2
β∗min

) ≤ τ ,

then with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, sign(βτ̄ ) = sign(β∗);

D. (l2-bound) For some constant C and κ large enough to satisfy

4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
) ≤ τ ,

there is a τ ∈ [0, τ ] such that ‖βτ − β∗‖2 ≤ (C + 2σ
γ1/2

)
√

s log p
n with

probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

.

Remark 4.1. A. For sign-consistency of LBISS,

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖)
γη

)√
log p

n

is enough to guarantee the existence of κ.
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B. For l2-consistency

C ≥
8σ (maxj∈T ‖Xj‖n)

ηγ

is enough to guarantee the existence of κ.
C. Taking κ =∞, we get the Theorem 3.3 for Bregman ISS.
D. An l2-error bound of the same rate for estimator β(τ̄) can be established

using the monotonicity of ‖XS(β̃∗S−βS(t))‖2 (see Appendix) for t ≤ τ̄ ,

‖β(τ̄)− β̃‖2 ≤
‖XS(βS(τ̄)− β̃∗S)‖2√

nγ
≤
‖XS(βS(τ)− β̃∗S)‖2√

nγ
, τ ≤ τ̄

≤
√
K(X∗SXS)

(
C +

2σ
√
γ

)√
s log p

n
,

where K(X∗SXS) is the condition number of X∗SXS.

4.2. Consistency of Linearized Bregman iterations. The following the-
orem establishes statistical consistency conditions for Linearized Bregman
Iteration (1.4).

Theorem 4.2 (Consistency of Linearized Bregman Iterations). Let tn =∑n−1
k=0 αk and

τ :=
(1−B/(κη))η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.

Assume that κ is big enough to satisfy

β∗max + 2σ

√
log p

γn
+
‖Xβ∗‖2 + 2

√
s log n

n
√
γ

, B ≤ κη,

and step size α is small such that κα‖XSX
∗
S‖ < 2. Then any solution path

of (1.3) satisfies

A. (No-false-positive) for all n s.t. tn ≤ τ , the path has no-false-
positive with probability at least 1− 2

p
√
π log p

− 1
n
√
π logn

, supp(βk) ⊆ S;

B. (Sign-consistency) moreover if the smallest magnitude β∗min is strong
enough and κ is big enough to ensure

β∗min ≥
4σ

γ1/2

√
log p

n
,
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8 + 4 log s

γ̃β∗min

+
1

κγ̃
log(

3‖β∗‖2
β̃min

) + 3α ≤ τ ,

where γ̃ = γ(1 − κα‖XSX
∗
S‖/2), then with probability at least 1 −

2
p
√
π log p

− 1
n
√
π logn

, sign(βk∗) = sign(β∗) for k∗ = max{k : tk ≤ τ̄}.
C. (l2-bound) for some large enough constants κ and C such that

4

Cγ̃

√
n

log p
+

1

2κγ̃
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
) + 2α ≤ τ ,

with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, there is a k∗, tk∗ ≤ τ̄ ,

such that ‖βk∗ − β∗‖2 ≤ (C + 2σ
γ1/2

)
√

s log p
n .

Remark 4.2. A. Taking α→ 0, we have γ̃ = γ, and Theorem 4.1 for
Linearized Bregman ISS follows.

B. The condition κα‖XSX
∗
S‖ < 2 is necessary to ensure the convergence

of LB algorithm in the noiseless case. This condition also guarantees
the monotonic descent of ‖XS(βS,k − β̃S)‖ before τ .

5. Analysis of ISS Dynamics. The general idea to analyze differen-
tial inclusions in (1.2) and (1.3) is to associate these dynamics with some
potential or Lyapunov functions, which control a fast convergence of solu-
tions to the oracle estimator. The restricted strongly convex condition A1
suggests us that when the solution path β(t) evolves in the support set S, a
suitable choice of potential functions should be expected with exponentially
fast decay, which enables us to estimate the stopping time of reaching sign
consistency and small l2-error.

The difficulty lies in that ISS dynamics are differential inclusions, hence
we exploit differential inequalities of such a potential function to derive the
bounds.

5.1. Potential function. One would like to study the dynamics of the
following differential inclusion

ρ̇t +
1

κ
β̇t = −X∗X(βt − β̃∗)(5.1a)

ρt ∈ ∂‖βt‖1,(5.1b)

where β̃∗ is the oracle estimator. Assuming the right continuity of solutions
and multiplying both sides above by β(t) − β̃∗, one obtains a potential or
Lyapunov function Ψ : Rp → R+

0 associated with the dynamics

d

dt
(Ψ(βt)) = − 1

n
‖X(βt − β̃∗)‖22,
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where

(5.2) Ψ(β) = D(β̃, β) +
‖β − β̃‖2

2κ

and D(β̃, β) is the Bregman distance

(5.3) DV (β̃, β) := V (β̃)− V (β)− 〈∂V (β), β̃ − β〉

induced by the particular convex function V (β) = ‖β‖1. As n � p, matrix
X has a large null-space, and to ensure the stationary point of the dynamics
being the oracle solution, one must restrict the dynamics evolving outside
the subspace ker(X).

5.2. Differential inequality with restricted exponential decay of potential.
Define the following Oracle Dynamics as if an oracle discloses the true vari-
able set S such that we restrict our attention on a subspace defined by S,

(5.4) ρ̇′S +
1

κ
β̇′S = −X∗SXS(β′S − β̃∗S), ρ′S(t) ∈ ∂‖β′S(t)‖1.

Here X∗SXS is a s × s symmetric matrix satisfying the strong convexity
X∗SXS ≥ γIs, which will lead to exponentially fast decay of potential func-
tion.

To reach this goal, our key treatment here is a differential inequality
associated differential inclusion in Oracle Dynamics which is tight enough
to ensure the exponential decay of potential function. This is a Bihari’s type
[Bih56] nonlinear differential inequality, which generalizes the linear cases of
Grönwall-Bellman inequalities [Gro19, Bel43]. In our treatment, a piecewise
continuous bound is given which leads to the tight rates in this paper.

Lemma 5.1 (Generalized Bihari’s Inequality). The potential Ψ of the
Oracle Dynamics above satisfies the following differential inequality

d

dt
(Ψ(β′S)) ≤ −γF−1(Ψ(β′S)),

where F−1 is the right-continuous inverse of the following strictly increasing
function

(5.5) F (x) =
x

2κ
+


0 0 ≤ x < β̃2

min

2x/β̃min β̃2
min ≤ x ≤ sβ̃2

min

2
√
xs x ≥ sβ̃2

min.



SPARSE RECOVERY VIA DIFFERENTIAL INCLUSIONS 21

Such an inequality ensures a decrease of the potential function at a fast
enough speed which leads to the following tight estimates on stopping time.

We are concerned with the following stopping time reaching sign-consistency
and l2-consistency of Oracle Dynamics, respectively. Define

(5.6) τ̃1 := inf{t > 0 : sign(β′S) = sign(β̃∗S)},

(5.7) τ̃2(C) := inf

{
t > 0 : ||β′S − β̃∗S ||2 ≤ C

√
s log p

n

}
.

Equipped with the generalized Bihari’s inequality, one can build up the
following bounds for stopping time on sign-consistency and l2-consistency,
respectively.

Lemma 5.2. The following bounds hold for the Oracle Dynamics (5.4)

τ̃1 ≤
4 + 2 log s

γβ̃∗min
+

1

κγ
log(
‖β̃∗‖2
β̃∗min

),

τ̃2(C) ≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β̃∗‖22
C2s log p

).

Remark 5.1. A. τ̃1 ≤ O(log s/β∗min) says that β(t) will reach sign-
consistency after t ≥ O(log s/β̃min). The factor log s is due to the
potential method above which converts a multidimensional dynamics
into a one-dimensional differential inequality, and dropping potential
exponentially from at least ‖β̃∗S‖1 ≥ sβ̃∗min to 0 requires necessarily the
O(log s) time.

B. τ̃2(C) ≤ O( 1
C

√
n
p ) says that l2-consistency can be reached before τ =

O(
√

n
p ) as long as C is a sufficiently large constant.

5.3. Sign-consistency and l2-error bound. Now we are ready to reach the
sign-consistency and l2-error bound for β(t) by setting τ̃1 ≤ τ̄ and τ̃2(C) ≤ τ̄ ,
respectively. In these cases, Oracle Dyanmics (5.4) β′S(t) meets the original
path βS(t) when restricted on S. The complete proofs of Theorem 4.1 and
its discrete version of Theorem 4.2 will be found in Appendix A, together
with their supporting lemmas.
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6. Data-dependent Stopping Rules for Bregman ISS. All the
previous results enable us to select τ̄ as a stopping time which however
depends on unknown parameters γ, η, and noise level σ, hence is not a
data-dependent stopping rule. In this section we present two preliminary
results with early stopping rules comparable to [CW11], which only depend
on the noise level σ and thus can be estimated from data. We leave it our
future work to explore fully adaptive stopping rules.

In the following, define the residue r(t) := y −Xβ(t). The first theorem
adopts the stopping rule based on ‖r(t)‖2 and the second theorem is based
on ‖Xr(t)‖∞.

Theorem 6.1. Suppose

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
,

and

β∗min ≥
2σ
√
γ

√1 + 2

√
log n

n
+

√
log s

n

 .

Then Bregman ISS with the stopping rule ‖r(t)‖2 ≤ σ
√
n+ 2

√
n log n selects

the true subset S with probability at least 1−O(1/n).

Remark 6.1. • This result is comparable to Theorem 7 in [CW11].
• The first condition on the minimum of magnitude of signals ensures

the model selection consistency of the Bregman ISS path and thus indi-
cates that one can find some t along the path so that the residual term
satisfies ‖r(t)‖2 ≤ σ

√
n+ 2

√
n log n. Once the path achieves sign con-

sistency, the Bregman ISS must stop.

• The second condition β∗min ≥ 2σ√
γ

(√
1 + 2

√
logn
n +

√
log s
n

)
guaran-

tees that one can not stop earlier before Bregman ISS achieves a full
recovery. Note that as n → ∞, one needs β∗min ≥ 2σ/

√
γ which is a

constant.

Theorem 6.2. In addition to (3.11), suppose

β∗min ≥
2σmaxi ‖Xi‖n

√
2(1 + c)s log p√

nγ
+ 2σ

√
log s

nγ
.

Then Bregman ISS with the stopping rule ‖XT r(t)‖∞ ≤ 2σ
√

maxi ‖Xi‖ log p
(δ > 0) selects the true subset S with probability at least 1−O(1/p+ 1/n).
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Remark 6.2. This result is comparable to Theorem 8 in [CW11], though
the lower bound β∗min ≥ O(σ

√
s log p/n) loses a factor

√
s here. As n→∞,

the lower bound can be arbitrarily small.

The remaining of this section presents the proofs of the theorems above.

Proof of Theorem 6.1. Lemma 3 in [CW11] or Lemma 5.2 in [CXZ09]
shows that with probability at least 1−1/n, ε is essentially l2 upper bounded

‖ε‖2 ≤ σ
√
n+ 2

√
n log n.

Hence with the same probability,

‖r(τ∗)‖ = ‖(I −XS(X∗SXS)−1XS)ε‖2 ≤ ‖ε‖2 ≤ σ
√
n+ 2

√
n log n

We have now shown that the Bregman ISS stops once the path acheives sign
consistency.

Next we are going to show that the algorithm will not stop whenever there
is some i ∈ S such that βi(t) = 0. By Lemma A.5,

‖rt‖ ≥ ‖XS(β̃∗S − βS(t))‖
≥ √

nγ‖β̃∗S − βS(t)‖
≥ √

nγβ̃∗min

≥ 2σ

√
n+ 2

√
n log n

provided that β̃∗min ≥ 2σ

√
1+2
√

logn/n

γ . Note that

‖(X∗SXS)−1X∗Sε‖∞ ≤ 2σ

√
log s

nγ
, w. p. at least 1− 2n−1,

so it suffices to have β∗min ≥
2σ(
√
n+2
√
n logn+

√
log s)√

nγ .

Proof of Theorem 6.2. By assumptions

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
.

Hence, according to Theorem 4.2, the Bregman ISS achieves the sign con-
sistency with high probability. Assume that at time τ∗, β(τ∗) has the same
sign as the underlying sparse signal β. For each t,

rt = (I −XS(t)(X
∗
S(t)XS(t))

−1X∗S(t))(XSβS + ε) = st + nt,
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where st = (I − PS(t))XSβS is the signal part of the residual and nt =
(I − PS(t))ε is the noise part of the residual. Then rτ∗ = nτ∗ . Let b∞ =

σ
√

2(1 + c) maxi ‖Xi‖ log p.

Prob(‖XTnt‖∞ = ‖XT (I − Pt)ε‖∞ ≥ b∞) ≤
∑
i

Prob(|XT
i (I − Pt)ε| ≥ b∞)

≤
∑
i

Prob(|XT
i ε| ≥ b∞)

≤ 2

pc
√

2 log p
,

which means the algorithm stops at τ∗.
Next we are going to show that the algorithm will not stop whenever there

is some i ∈ At ⊆ S such that βi(t) = 0. By Lemma A.5,

‖XT rt‖∞ = ‖XT [XS(β̃∗S − βS(t)) + (I − PS)ε]‖∞,
≥ ‖XT

S [XS(β̃∗S − βS(t)) + (I − PS)ε]‖∞,
= ‖XT

SXS(β̃∗S − βS(t))‖∞, XT
S (I − PS)ε = 0,

≥ 1√
s
‖XT

SXS(β̃∗S − βS(t))‖2,

≥ nγ√
s
‖β̃∗S − βS(t)‖2,

≥ nγ√
s
β̃∗min ≥ b∞,

provided that β̃∗min ≥
√
sb∞
nγ . Note that

‖(X∗SXS)−1X∗Sε‖∞ ≤ 2σ

√
log s

nγ
, w. p. at least 1− 2n−1,

so it suffices to have

β∗min ≥ b∞ + 2σ

√
log s

nγ
=
σ(maxi

‖Xi‖√
n

√
2(1 + c)s log p/γ +

√
log s)

√
nγ

with probability at least 1−O(p−1 + n−1).

7. Experiments. In this section we provide some experimental results
to illustrate the relations among LASSO, Bregman ISS (ISS) and Linearized
Bregman iteration (LB).
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In this experiment we choose n = 200, p = 100 and only the first
s = 30 elements of β are nonzero (βj = rj + sign(rj), where rj ∼ N (0, 1),
j = 1, . . . , 30). Each sample xi is drawn from the distribution N (0,Σp). We
choose Σp = (σij), where σij = 1 if i = j, and σij = 1/(3p) otherwise. In
such a setting, the Irrepresentable (Incoherence) Condition holds with high
probability, since Σp is nearly identity matrix. We choose noise level σ = 1
here, considering the choice that the magnitude of βi is O(1).

Figure 1 is an example of regularization path of three methods. As κ
goes bigger, the LB path becomes closer to that of ISS. For LB we choose
κα = 1/2 such that the step size of gradient decent is 1/2, to satisfy the
convergence condition. Note that if α is too big, the solution is oscillating.

To compare the performance of three methods quantitatively, we choose
the AUC of ROC curve, to measure the goodness of three regularization
paths. ROC (receiver-operating-characteristic) curve is plotted by thresh-
olding the regularization parameter λ in LASSO, t in ISS, or k in LB at
different levels which create different true positive rates (TPR) and false
positive rates (FPR):

TPR =
#{Selected True V ariables}

#{True V ariables}
, FPR =

#{Selected False V ariables}
#{False V ariables}

.

ROC is a curve from (0, 0) to (1, 1). AUC (Area Under the Curve) means
the area under the ROC curve. Large AUC values indicate that the signals
are picked out earlier than noise on regularization paths. Repeating the
experiments for 100 times, in Table 1 we report the mean AUC with standard
deviations for the three methods at different noise levels. It shows that all
the three methods work reasonably well in this example, while Bregman ISS
performs slightly better than LASSO. As κ becomes bigger, the performance
of LB gets closer to that of Bregman ISS. Notice that as noise level σ gets
larger, all the methods have their performance decay since signal and noise
get confused.

σ LB(κ = 4) LB(κ = 64) LB(κ = 1024) ISS LASSO

1 0.9771(0.0124) 0.994(0.0069) 0.9947(0.0065) 0.9948(0.0064) 0.9945(0.0068)

3 0.9604(0.0169) 0.9867(0.009) 0.9882(0.0083) 0.9884(0.0082) 0.9879(0.0086)

5 0.9393(0.0226) 0.9659(0.0188) 0.9673(0.0188) 0.9676(0.0187) 0.9671(0.0187)

Table 1
Mean AUC (standard deviation) for three methods at different noise levels (σ): ISS has a

slightly better performance than LASSO in terms of AUC and as κ increases, the
performance of LB approaches that of ISS. As noise level σ increases, the performance of

all the methods drops.
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Fig 1. Regularization path of LASSO, Bregman ISS, and Linearized Bregman Iterations
with different choices of κ (κα = 1/2). As κ grows, the paths of Linearized Bregman
iterations approach that of Bregman ISS.

8. Discussion and Conclusion. In this paper, noisy sparse signal
recovery is approached via two continuous dynamics, called Bregman ISS
and Linearized Bregman ISS, where a discretization of the latter leads to
the widely used Linearized Bregman Iteration algorithm. Equipped with
an early stopping regularization, Bregman ISS can simultaneously achieve
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model selection consistency and unbiased estimation. As a discretization of
Linearized Bregman ISS paths, model selection consistency and minimax op-
timal l2-error bounds for Linearized Bregman Iteration are also established.
Some data-dependent stopping rules are given for Bregman ISS solution
paths.

Future directions of our study include fully data-dependent stopping rules
and generalization of our results in nonlinear settings.

APPENDIX A: PROOFS

A.1. Proof of Consistency of LBISS.

Lemma A.1. Assume that XS has full column rank.
(A) For all t ≤ τ , solution of (1.3) β(t) contains no false positive if

‖X∗TX
†
S(ρS + βS/κ) + tX∗TPT ε‖∞ < 1, ∀t ≤ τ,

where PT = I−X†SX∗S is the projection operator onto the column space
of XT .

(B) Mean path β̄(τ) is sign-consistent if

sign(β̄S(τ)) = sign(β∗S + Φ−1
S X∗Sε−

1

τ
Φ−1
S (ρS(τ) +

1

κ
βS(τ)) = sign(β∗S)

where ΦS = X∗SXS = 1
nX

T
SXS.

No-false-positivity and the sign-consistency for mean path in Theorem
4.1, directly follow this lemma.

Proof of Lemma A.1. Consider the differential inclusion (1.3)

ρ̇+
1

κ
β̇ = − 1

n
XT (Xβ − y) = −X∗X(β − β∗) +X∗ε

Assume there exists a τ ≥ 0, such that for all t ≤ τ , solution path β(t)
contains no false-positive, i.e. supp(β(t)) ⊆ S. Then for all t ≤ τ ,

(A.1) ρ̇S + β̇S/κ = −X∗SXS(βS − β∗S) +X∗Sε,

and

(A.2) ρ̇T + β̇T /κ = −X∗TXS(βS − β∗S) +X∗T ε.

From (A.1) one gets −(βS − β∗S) = (X∗SXS)−1(ρ̇S + β̇S/κ)− (X∗SXS)−1X∗Sε,
which leads to the following equation by plugging into (A.2)

ρ̇T + β̇T /κ = X∗TX
†
S(ρ̇S + β̇S/κ) +X∗TPT ε
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where PT = I − PS = I −X†SX∗S is the projection matrix onto im(XT ).
Integration on both sides and setting

‖ρT (t) + βT (t)/κ‖∞ = ‖X∗TX
†
S(ρS(t) + βS(t)/κ) + tX∗TPT ε‖∞ < 1

the first part follows from βT (t) = κ · shrink(ρT (t) + βT (t)/κ, 1).
The second part is obtained by integration on (A.1)

β̄S(τ) =
1

τ

∫ τ

0
βS(t)dt = β∗S −

1

τ
Φ−1
S (ρS(τ) +

1

κ
βS(τ)) + Φ−1

S X∗Sε

followed by taking sign(β̄S(τ)) = sign(β∗S).

Lemma A.2. Suppose ε ∼ N(0, σ2In), and X ∈ Rn×p

Prob(‖XT ε‖∞ > σ
√

2(1 + µ) log pmax
j
‖Xj‖) ≤

1

pµ
√
π log p

;(A.3)

Prob(‖XT ε‖2 > σ
√

2(1 + µ)tr(XTX) log p) ≤ 1

pµ
√
π log p

.(A.4)

Proof of Lemma A.2. From the Gaussian tail probability bound,

Prob(|XT
j ε| > σ

√
2(1 + µ) log p‖Xj‖) ≤ 2

1√
2(1 + µ) log p

√
2π
e−

2(1+µ) log p
2

≤ 1

p1+µ
√
π log p

.

The first inequality is directly the union bound of index j. The second in-
equality is obtained by the fact

{ε : ‖XT ε‖2 > σ
√

2(1 + µ)tr(XTX) log p} ∈
⋃
j

{ε : |XT
j ε| > σ

√
2(1 + µ) log p‖Xj‖},

which ends the proof.

Proof of Lemma 5.1. Denote

At = {i ∈ S|sign(β̃∗i ) 6= sign(β′i)} ⊆ S.

Noticed that

‖β̃∗S − β′S‖22 ≥
∑
i∈At

β̃∗2i

≥ max{β̃∗min
∑
i∈At

|β̃∗i |, (
∑
i∈At

|β̃∗i |)2/s}

≥ max{β̃∗minD(β̃∗S , β
′
S)/2, D(β̃∗S , β

′
S)2/4s}
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and
‖β̃∗S − β′S‖2 < β̃∗min ⇒ At = ∅ ⇒ β̃∗S = β′S ⇒ D(β̃∗S , β

′
S) = 0

then according to the definition of Ψ and F , we have

Ψ(β′S) =
‖β̃∗S − β′S‖22

2κ
+D(β̃∗S , β

′
S) ≤ F (‖β̃∗S − β′S‖22)

which implies
F−1(Ψ(β′S)) ≤ ‖β̃∗S − β′S‖22

.
Combining the following result from right continuous differentiability〈

dρ′S
dt

, β′S

〉
= 0

and the strong convexity conditions of X∗sXs, we have

d

dt
(Ψ(β′S)) = −

〈
β′S − β̃∗S , X∗sXs(β

′
S − β̃∗S)

〉
≤ −γ‖β̃∗S−β′S‖22 ≤ −γF−1(Ψ(β′S)),

as desired.

Proof of Lemma 5.2. From the generalized Bihari’s inequality

τ̃1 ≤ −
∫ τ̃1

0

d
dt(Ψ(β′S))

γF−1(Ψ(β′S))
dt =

1

γ

∫ Ψ(0)

Ψ(t̃∞)

dx

F−1(x)

Note that Ψ(0) = ‖β̃∗S‖1 +
‖β̃∗S‖

2

2κ . so F−1(Ψ(0)) ≤ ‖β̃∗S‖22. By continuity

and monotonicity of F (x) on (β̃2
min,+∞) and and Ψ(t̃1) ≥ β̃2

min
2κ

γτ̃1 ≤
∫ β̃2min

2κ
+2β̃min

β̃2
min
2κ

dx

F−1(x)
+

∫ sβ̃2
min

β̃2
min

dF

x
+

∫ ‖β̃‖22
sβ̃2
min

dF

x

≤
∫ β̃2min

2κ
+2β̃min

β̃2
min
2κ

dx

β̃2
min

+

∫ sβ̃2
min

β̃2
min

(
1

2κx
+

2

β̃minx
)dx+

∫ ‖β̃‖22
sβ̃2
min

(
1

2κx
+

√
s

x
3
2

)dx

≤ 4 + 2 log s

β̃min
+

1

κ
log(
‖β̃‖2
β̃min

).

Proof of τ̃2 is straightforward now. For t < τ̃2,

dΨ

dt
≤ −γ|β̃ − β|22 ≤ −γ

C2s log d

n
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Let
F̃ (x) =

x

2κ
+ 2
√
xs ≥ F (x) ∀x > 0

Let F̃−1 be the right-continuous inverse. Then ‖β(t)− β̃‖22 ≥ F−1(Ψ(β)) ≥
F̃−1(Ψ(β)). By generalized Bihari’s inequality

−1

γ

dΨ

dt
≥ |β̃ − β|22 ≥ F̃−1(Ψ)

Therefore

−1

γ

dΨ

dt
≥ max{F̃−1(Ψ),

C2s log d

n
}

Again, we have:

τ̃2 ≤
1

γ

∫ Ψ(0)

Ψ(t̃2)

dx

max{F̃−1(x), C
2s log d
n }

Noticed that
F̃−1(Ψ(0)) ≤ F−1(Ψ(0)) ≤ |β̃|22

Therefore,

γτ̃2 ≤
∫ F̃ (C2s log d/n)

0

dx
C2s log d

n

+

∫ Ψ(0)

F̃ (C2s log d/n)

dx

F̃−1(x)

≤
∫ (C2s log d/n)/2κ+2Cs

√
log d/n

0

dx
C2s log d

n

+

∫ |β̃|22
C2s log d/n

dF̃

x

≤ 1

2κ
+

2

C

√
n

log d
+

∫ |β̃|22
C2s log d/n

(
1

2κx
+

√
s

x3/2
)dx

≤ 4

C

√
n

log d
+

1

2κ
(1 + log

n|β̃|22
C2s log d

)

which gives the bounds.

Proof of Theorem 4.1.

A = {ε : ‖XS(X∗SXS)−1X∗Sε‖2 > 2σ
√
s log n}

B = {ε : ‖(X∗SXS)−1X∗Sε‖∞ > 2σ

√
log p

nγ
}

C = {ε : ‖X∗TPT ε‖∞ > 2σ

√
log p

n
max
j∈T
‖Xj‖n}
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Note tr(XS(X∗SXS)−1X∗S) = s, (X∗SXS)−1X∗S ·XS(X∗SXS)−1 = (X∗SXS)−1 �
1/γ, and X∗TPT · PTXT � X∗TXT , using Lemma A.2, we have

Prob(A) ≤ 1

n
√
π log n

, Prob(B) ≤ 1

p
√
π log p

, Prob(C) ≤ 1

p
√
π log p

.

(1) (no-false-positivity for β(t) up to τ) First consider the LB-ISS

(A.5)
dρS
dt

+
1

κ

dβS
dt

= −X∗SXS(βS − β̃S)

where β̃S = β∗S+(X∗SXS)−1X∗Sε. It is easy to conclude ‖XS(β̃S−βS)‖2
is monotonically decreasing based on the following observation

d

dt

‖XS(β̃S − βS)‖22
2n

= −
〈
dρS
dt

,
dβS
dt

〉
− 1

κ

∥∥∥∥dβSdt
∥∥∥∥2

2

= −1

κ

∥∥∥∥dβSdt
∥∥∥∥2

2

≤ 0

using 〈dρS(t)/dt, dβS(t)/dt〉 = 0 from the assumption of Bregman ISS
paths. On the set Ac

⋃
Bc,

‖βS‖∞ ≤ ‖β̃S‖∞ + ‖β̃S − βS(t)‖2

≤ β̃max +
‖XS(β̃S − βS(t))‖2√

nγ

≤ β̃max +
‖XS β̃S‖2√

nγ

≤ β∗max + 2σ

√
log p

γn
+
‖XSβ

∗‖2 + 2σ
√
s log n

√
nγ

Denote this upper bound as B. Returning to the original problem, by
Lemma A.1, it suffices to have for all t ≤ τ ,

1 > ‖X∗TX
†
S(ρS + βS/κ) + tX∗TPT ε‖∞

The first part

‖X∗TX
†
S(ρS + βS/κ)‖∞ ≤ (1− η)(1 + ‖βS‖∞/κ) ≤ 1− (1−B/κη)η

t ≤ τ :=
1−B/κη

2
ησ−1

√
n/ log p

(
max
j∈T
‖Aj‖

)−1

= O(ησ−1
√
n/ log p).

On the set Cc, we have t‖X∗TPT ε‖∞ < (1−B/κη)η.
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(2) (no-false-negativity for the mean path) it suffices to ensure

β∗min > ‖Φ−1
S X∗Sε‖∞ + ‖1

τ
Φ−1
S (ρS + βS/κ)‖∞.

Where ΦS = X∗SXS . The second part on the right hand side is ‖ 1
τΦ−1

S (ρS+
βS/κ)‖∞ ≤ 1

τ ‖Φ
−1
S ‖∞(1 + B/κ). The first part is bounded on the set

B|c

(3) (l2-error bound) Lemma 5.2 implies if C >
8σ(maxj∈T ‖Xj‖n)

ηγ , when κ
is big enough, we have

t̃2(C) ≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n|β̃|22
C2s2 log p

)

≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
)

≤ τ

Thus ∃τ ∈ [0, τ ]

||βS(τ)− β̃S ||2 ≤ C
√
s log(p)/n

Note that with high probability

||β∗S − β̃S ||2 ≤ 2σ
√
s log(p)/nγ−1/2

(4) (Sign Consistency for βt) The condition

β∗min ≥
4σ

γ1/2

√
log p

n

implies that β̃ has the same sign as β∗ as well as 1/2|β∗i | ≤ |β̃i| ≤
3/2|β∗i | for each component i. Thus sign consistency is reached when
t̃∞ ≤ τ , or

4 + 2 log s

γβ̃min
+

1

κγ
log(
‖β̃‖2
β̃min

) ≤ 8 + 4 log s

β∗minγ
+

1

κγ
log(

3‖β∗‖2
β∗min

)

≤ τ

which is ensured by κ big enough and

β∗min ≥ 2β̃min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
.

This completes the proof.
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A.2. Proof of Consistency of Linearized Bregman Iterations.
First of all, we give a discrete version of generalized Bihari’s inequality which
is useful for Linearized Bregman iterations (1.4).

Lemma A.3 (Discrete Generalized Bihari’s inequality). Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃)

where X∗SXS ≥ γI. Let the potential (or Lyapunov) function be

Ψk = D(β̃, βk) +
||βk − β̃||2

2κ

Then the following difference inequality holds

Ψk+1 −Ψk ≤ −αkγ(1− καk‖XSX
∗
S‖/2)F−1(Ψk)

where F is defined by (5.5).

Proof of Lemma A.3. Similar to continue case, we have

‖βk − β̃‖22 ≥ F−1(Ψk).

Since `1-norm is homogeneous of degree 1, its subgradient ρ ∈ ∂‖β‖1
satisfies 〈ρ, β〉 = ‖β‖1. Multiplying βk − β̃ on the both sides of iteration
equation, it leads to

Ψk+1−Ψk+(ρk+1−ρk)βk−‖βk+1−βk‖2/2κ = −αk
〈
βk − β̃,X∗SXS(βk − β̃)

〉
Note that for i ∈ S, (ρ

(i)
k+1 − ρ

(i)
k )β

(i)
k+1 = |β(i)

k+1| − ρ
(i)
k β

(i)
k+1 ≥ 0

‖βk+1 − βk‖2/κ− 2(ρk+1 − ρk)βk
≤ ‖βk+1 − βk‖2/κ+ 2(ρk+1 − ρk)(βk+1 − βk)
≤ ‖βk+1 − βk‖2/κ+ 2(ρk+1 − ρk)(βk+1 − βk) + ‖ρk+1 − ρk‖2

≤ κ‖ρk+1 − ρk + (βk+1 − βk)/κ‖2

= κα2
k‖X∗SXS(βk − β̃)‖2

Ψk+1 −Ψk ≤ −αk
n

〈
XS(βk − β̃), XS(βk − β̃)

〉
+
α2
kκ

2n2

〈
XT
SXS(βk − β̃), XT

SXS(βk − β̃)
〉

= −αk
n

〈
XS(βk − β̃), (I − καkXSX

∗
S/2)XS(βk − β̃)

〉
≤ −αk

n
(1− καk‖XSX

∗
S‖/2))‖XS(βk − β̃)‖2

≤ −αkγ(1− καk‖XSX
∗
S‖/2))‖βk − β̃‖2

≤ −αkγ(1− καk‖XSX
∗
S‖/2))F−1(Ψk)

which gives the result.
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Next we present a discrete stopping time bound from the inequality above.

Lemma A.4 (Discrete Stopping Time Bounds). Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃)

where X∗SXS ≥ γI and αk ≤ α, ∀k.
Define

τ̃1 := inf

{
k−1∑
t=0

αt : sign(βk) = sign(β̃)

}
and

τ̃2(C) := inf

{
k−1∑
t=0

αt : ||βk − β̃||2 ≤ C
√
s log p

n

}
Then the following bounds hold,

τ̃∞ ≤
4 + 2 log s

γ̃β̃min
+

1

κγ̃
log(
‖β̃‖2
β̃min

) + 3α

τ̃2(C) ≤ 4

Cγ̃

√
n

log p
+

1

2κγ̃
(1 + log

n|β̃|22
C2s log p

) + 2α

where γ̃ = γ(1− κα‖XSX
∗
S‖/2)

Remark A.1. Taking α → 0, it recovers the stopping time bounds in
continuous case, Lemma 5.2.

Proof of Lemma A.4. Consider

Ψk = D(β̃, βk) +
||βk − β̃||2

2κ

For a uniform upper bound on step sizes αt ≤ α, by the discrete Bihari’s
inequality in Lemma A.3

Ψk+1 −Ψk ≤ −αkγ̃F−1(Ψk) ≤ −αkγ̃F̃−1(Ψk)

where γ̃ = γ(1− κα‖XX∗‖/2) and F̃ (x) = x
2κ + 2

√
xs ≥ F (x), ∀x > 0.

For k such that Ψk ≥ 2β̃min + β̃2
min/2κ, denote Lk = F−1(Ψk), which is

non-increasing. Define tm =
∑m−1

t=0 αt. Let n1 = sup{n : Ln > sβ̃2
min}, then

γ̃αk ≤
F (Lk)− F (Lk+1)

Lk
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then for 0 ≤ k ≤ n1 − 1,

F (Lk)− F (Lk+1)

Lk
≤ (

logLk
2κ

− 2

√
s

Lk
)− (

logLk+1

2κ
− 2

√
s

Lk+1
)

This is because of
Lk − Lk+1

Lk
≤ log(

Lk
Lk+1

)

using 1− x ≤ − log x for x ≤ 1, and

√
Lk −

√
Lk+1

Lk
≤
√
Lk −

√
Lk+1√

Lk
√
Lk+1

=
1√
Lk+1

− 1√
Lk

γ̃tn1 ≤ (
logL0

2κ
− 2

√
s

L0
)− (

logLn1

2κ
− 2

√
s

Ln1

)

≤ (
log ‖β̃‖2

2κ
− 2

√
s

‖β̃‖2
)− (

log sβ̃2
min

2κ
− 2

√
s

sβ̃2
min

)

Let n2 = sup{n : Ln > β̃2
min},

γ̃αk ≤
F (Lk)− F (Lk+1)

Lk

Then similarly, we have

γ̃(tn2 − tn1+1) ≤ (
1

2κ
+

2

β̃min
)(logLn1+1 − logLn2)

≤ (
1

2κ
+

2

β̃min
)(log sβ̃2

min − log β̃2
min)

Let n3 = sup{n : Ψn > β̃2
min/2κ}

γ̃(tn3 − tn2+1) ≤
n3−1∑

k=n2+1

Ψk −Ψk+1

β̃2
min

≤
β̃2
min
2κ + 2β̃min −

β̃2
min
2κ

β̃2
min

=
2

β̃min



36 OSHER, RUAN, XIONG, YAO AND YIN

To sum up, we have

τ̃1 ≤ tn3+1 ≤
4 + 2 log s

γ̃β̃min
+

1

κγ̃
log(
‖β̃‖2
β̃min

) + 3α

Similarly, we have

τ̃2(C) ≤ 4

Cγ̃

√
n

log d
+

1

2κγ̃
(1 + log

n|β̃|22
C2s2 log d

) + 2α,

which ends the proof.

Proof of Theorem 4.2. The proof is the same to the continue case.
The only difference is the decreasing of ‖X(βk − β̃)‖2 needs the condition
κα‖XSX

∗
S‖ < 2.

Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃)

where X∗SXS ≥ γI.

‖XS(βk+1 − β̃)‖2 − ‖XS(βk − β̃)‖2

= ‖XS(βk+1 − βk)‖2 + 2(βk+1 − βk)TXT
SXS(βk − β̃)

= ‖XS(βk+1 − βk)‖2 − 2n/αk(βk+1 − βk)T [(ρk+1 − ρk) + (βk+1 − βk)/κ]

≤ ‖XS(βk+1 − βk)‖2 − 2n/αk(βk+1 − βk)T (βk+1 − βk)/κ
= n(βk+1 − βk)T (X∗SXS − 2/αKκ)(βk+1 − βk)
≤ 0,

where we have used ‖XSX
∗
S‖ = ‖X∗SXS‖. Hence ‖XS(β̃S − βk)‖2 is mono-

tonically nonincreasing.

Note that this implies that ‖rt‖ := ‖y − Xβt‖ is monotonically nonin-
creasing for all t ∈ (0, τ̄). The following lemma makes it precise.

Lemma A.5. For t ∈ [0, τ̄ ], the residue admits an orthogonal decompo-
sition

‖rt‖2 = ‖y −Xβt‖2 = ‖XS(β̃∗S − βS(t))‖2 + ‖PT ε‖2

and is monotonically nonincreasing.
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Proof. By Pythagorean Theorem,

‖rt‖2 = ‖XS(β∗ − βt) + ε‖2 = ‖PSXS(β∗ − βt) + PSε‖2 + ‖(I − PS)ε‖2

= ‖XS(β∗ − βt) +XS(X∗SXS)−1X∗Sε‖2 + Cε,S

= ‖XS(β̃∗S − βS(t))‖2 + Cε,S

and the conclusion follows from that ‖XS(β̃∗S − βS(t))‖ is monotonically
nonincreasing.
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